翻訳と辞書
Words near each other
・ Non-aligned Scouting and Scout-like organisations
・ Non-allelic homologous recombination
・ Non-analytic smooth function
・ Non-apology apology
・ Non-aqueous phase liquid
・ Non-Archimedean
・ Non-Archimedean geometry
・ Non-Archimedean ordered field
・ Non-Archimedean time
・ Non-Aristotelian drama
・ Non-Aristotelian logic
・ Non-assertion covenant
・ Non-associative algebra
・ Non-attainment area
・ Non-autonomous mechanics
Non-autonomous system (mathematics)
・ Non-availability approach
・ Non-B database
・ Non-bank financial institution
・ Non-bank subsidiary
・ Non-banking financial company
・ Non-belligerent
・ Non-binding arbitration
・ Non-binding opinion
・ Non-binding opinion (United Kingdom patent law)
・ Non-binding resolution
・ Non-blocking
・ Non-blocking algorithm
・ Non-blocking I/O (Java)
・ Non-blocking linked list


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Non-autonomous system (mathematics) : ウィキペディア英語版
Non-autonomous system (mathematics)
In mathematics, an autonomous system is a dynamic equation on a smooth manifold. A non-autonomous system is a dynamic equation on a smooth fiber bundle Q\to \mathbb R over \mathbb R. For instance, this is the case of non-autonomous mechanics.
An ''r''-order differential equation on a fiber bundle Q\to \mathbb R is represented by a closed subbundle of a jet bundle J^rQ of Q\to \mathbb R. A dynamic equation on Q\to \mathbb R is a differential equation which is algebraically solved for a higher-order derivatives.
In particular, a first-order dynamic equation on a fiber bundle Q\to \mathbb R is a kernel of the covariant differential of some connection \Gamma on Q\to \mathbb R. Given bundle coordinates (t,q^i) on Q and the adapted coordinates (t,q^i,q^i_t) on a first-order jet manifold J^1Q, a first-order dynamic equation reads
: q^i_t=\Gamma (t,q^i).
For instance, this is the case of Hamiltonian non-autonomous mechanics.
A second-order dynamic equation
: q^i_=\xi^i(t,q^j,q^j_t)
on Q\to\mathbb R is defined as a holonomic
connection \xi on a jet bundle J^1Q\to\mathbb R. This
equation also is represented by a connection on an affine jet bundle J^1Q\to Q. Due to the canonical
imbedding J^1Q\to TQ, it is equivalent to a geodesic equation
on the tangent bundle TQ of Q. A free motion equation in non-autonomous mechanics exemplifies a second-order non-autonomous dynamic equation.
== References ==

* De Leon, M., Rodrigues, P., Methods of Differential Geometry in Analytical Mechanics (North Holland, 1989).
* Giachetta, G., Mangiarotti, L., Sardanashvily, G., Geometric Formulation of Classical and Quantum Mechanics (World Scientific, 2010) ISBN 981-4313-72-6 ((arXiv: 0911.0411 )).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Non-autonomous system (mathematics)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.